‘The editors of the new SAGE Handbook of Regression Analysis and Causal Inference have assembled a wide-ranging, high-quality, and timely collection of articles on topics of central importance to quantitative social research, many written by leaders in the field. Everyone engaged in statistical analysis of social-science data will find something of interest in this book.’

- John Fox, Professor, Department of Sociology, McMaster University

‘The authors do a great job in explaining the various statistical methods in a clear and simple way - focussing on fundamental understanding, interpretation of results, and practical application - yet being precise in their exposition.’

- Ben Jann, Executive Director, Institute of Sociology, University of Bern

‘Best and Wolf have put together a powerful collection, especially valuable in its separate discussions of uses for both cross-sectional and panel data analysis.’

-Tom Smith, Senior Fellow, NORC, University of Chicago

Edited and written by a team of leading international social scientists, this Handbook provides a comprehensive introduction to multivariate methods. The Handbook focuses on regression analysis of cross-sectional and longitudinal data with an emphasis on causal analysis, thereby covering a large number of different techniques including selection models, complex samples, and regression discontinuities.

Each Part starts with a non-mathematical introduction to the method covered in that section, giving readers a basic knowledge of the method's logic, scope and unique features. Next, the mathematical and statistical basis of each method is presented along with advanced aspects. Using real-world data from the European Social Survey (ESS) and the Socio-Economic Panel (GSOEP), the book provides a comprehensive discussion of each method's application, making this an ideal text for PhD students and researchers embarking on their own data analysis.

Chapter 8: Logistic Regression

Logistic Regression

Logistic regression
HenningBest and ChristofWolf


Many questions raised in the social sciences involve analyzing binary variables. For example, Best (2009) uses logistic regression to study farmers'decisions whether to adopt organic farming, and Cornwell and Laumann (2011) study sexual dysfunction. Other topics studied with logistic regression include educational attainment (e.g. university degrees) and unemployment.

A dichotomous variable can take two distinct values. As in most regression-based methods, it is convenient to code the variable as a binary variable with the values 0 and 1. Let us assume a variable should indicate whether a person has xenophobic attitudes or not. In this case it would make sense to code xenophobic persons with ‘1’ and non-xenophobic persons with ‘0'.1 How can we analyze this variable?

The Linear Probability Model

One rather ...

  • Loading...
locked icon

Sign in to access this content

Get a 30 day FREE TRIAL

  • Watch videos from a variety of sources bringing classroom topics to life
  • Read modern, diverse business cases
  • Explore hundreds of books and reference titles