• Entry
  • Reader's guide
  • Entries A-Z
  • Subject index

Probit Transformation

Probit transformation is widely used to transform a probability, percentage, or proportion to a value in the unconstrained interval (−∞,∞), which is usually referred to as a quantile in probability theory. Strictly speaking, probit transformation is the inverse of the cumulative distribution function of the standard normal distribution. For any observed value x ∈ (−∞,∞), the cumulative distribution function of the standard normal distribution, denoted by Φ(x), is defined as follows:

Φ(x)=x12πet22dt,

with t being a value that the standard normal distributed variable could take. It converts a value in the interval (−∞,∞) to a value p in the interval (0,1) such that p = Φ(x). For a probability p, or more generally any value between 0 and 1, Φ−1(p) is its probit transformation to transform p ...

    • Loading...
    locked icon

    Sign in to access this content

    Get a 30 day FREE TRIAL

    • Watch videos from a variety of sources bringing classroom topics to life
    • Read modern, diverse business cases
    • Explore hundreds of books and reference titles