NONLINEAR DYNAMICAL SYSTEMS that have sensitive dependence on initial conditions may exhibit chaotic behavior. In other words, if initial conditions are available only with some finite precision, two solutions starting from undistinguishable initial conditions (i.e., whose difference is smaller than the precision) can exhibit completely different future evolutions after time. Thus, the system behavior is unpredictable. Sensitive dependence on initial conditions can occur even in deterministic systems whose solutions are not influenced by any stochastic effects. Chaos theory attempts to find an underlying order in such chaotic behavior

In the early 1900s, H. Poincaré noticed that simple nonlinear deterministic systems can behave in a chaotic fashion. While studying the three-body problem in celestial mechanics, he found that the evolution of three planets could be complex and ...

  • Loading...
locked icon

Sign in to access this content

Get a 30 day FREE TRIAL

  • Watch videos from a variety of sources bringing classroom topics to life
  • Read modern, diverse business cases
  • Explore hundreds of books and reference titles